Deskilling HPL Using an Evolutionary Algorithm to Automate Cluster Benchmarking
نویسندگان
چکیده
The High-Performance Linpack (HPL) benchmark is the accepted standard for measuring the capacity of the world’s most powerful computers, which are ranked twice yearly in the Top 500 List. Since just a small deficit in performance can cost a computer several places, it is important to tune the benchmark to obtain the best possible result. However, the adjustment of HPL’s seventeen configuration parameters to obtain maximum performance is a time-consuming task that must be performed by hand. In a previous paper, we provided a preliminary study that proposed the tuning of HPL parameters by means of an Evolutionary Algorithm. The approach was validated on a small cluster hosted at the University of Luxembourg. In this article, we extend this initial work by describing Acbea, a fully-automatic benchmark tuning tool that performs both the configuration and installation of HPL followed by an automatic search for optimized parameters that will lead to the best benchmark results. Experiments have been conducted to validate this tool on several clusters, exploiting in particular the Grid’5000 infrastructure.
منابع مشابه
Multi-layer Clustering Topology Design in Densely Deployed Wireless Sensor Network using Evolutionary Algorithms
Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...
متن کاملA Hierarchy Topology Design Using a Hybrid Evolutionary Algorithm in Wireless Sensor Networks
Wireless sensor network a powerful network contains many wireless sensors with limited power resource, data processing, and transmission abilities. Wireless sensor capabilities including computational capacity, radio power, and memory capabilities are much limited. Moreover, to design a hierarchy topology, in addition to energy optimization, find an optimum clusters number and best location of ...
متن کاملDetermining Cluster-Heads in Mobile Ad-Hoc Networks Using Multi-Objective Evolutionary based Algorithm
A mobile ad-hoc network (MANET), a set of wirelessly connected sensor nodes, is a dynamic system that executes hop-by-hop routing independently with no external help of any infrastructure. Proper selection of cluster heads can increase the life time of the Ad-hoc network by decreasing the energy consumption. Although different methods have been successfully proposed by researchers to tackle...
متن کاملDetermining Cluster-Heads in Mobile Ad-Hoc Networks Using Multi-Objective Evolutionary based Algorithm
A mobile ad-hoc network (MANET), a set of wirelessly connected sensor nodes, is a dynamic system that executes hop-by-hop routing independently with no external help of any infrastructure. Proper selection of cluster heads can increase the life time of the Ad-hoc network by decreasing the energy consumption. Although different methods have been successfully proposed by researchers to tackle...
متن کاملخوشهبندی خودکار دادهها با بهرهگیری از الگوریتم رقابت استعماری بهبودیافته
Imperialist Competitive Algorithm (ICA) is considered as a prime meta-heuristic algorithm to find the general optimal solution in optimization problems. This paper presents a use of ICA for automatic clustering of huge unlabeled data sets. By using proper structure for each of the chromosomes and the ICA, at run time, the suggested method (ACICA) finds the optimum number of clusters while optim...
متن کامل